Tetrahedron Letters 50 (2009) 3195-3197

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Displacement reactions of 2-chloro- and 2,9-dichloro-1,10-phenanthroline: synthesis of a sulfur-bridged bis-1,10-phenanthroline macrocycle and a 2,2'-amino-substituted-bis-1,10-phenanthroline

A. Paul Krapcho*, Silvia Sparapani, Amber Leenstra, Joshua D. Seitz

Department of Chemistry, University of Vermont, Burlington, VT 05405, United States

ARTICLE INFO

Article history: Received 6 January 2009 Revised 27 January 2009 Accepted 28 January 2009 Available online 1 February 2009

Keywords: 9-Chloro-1,10-phenanthroline-2(1*H*)-thione 1,10-Dihydro-1,10-phenanthroline-2,9dithione Sulfur-bridged bis-1,1-phenanthroline macrocycle 2-Amino- and 2,9-diamino-substituted 1,10-phenanthrolines Amino-substituted-2,2'-bis-1,10phenanthroline

ABSTRACT

The synthesis and structural assignments of 9-chloro-1,1-phenanthroline-2(1*H*)-thione and 1,10-dihydro-1,10-phenanthroline-2,9-dithione have been accomplished. The sulfur-bridged bis-1,10-phenanthroline macrocycle was readily prepared by heating the thione or equimolar amounts of the dithione and 2,9-dichloro-1,10-phenanthroline in diphenyl ether. Displacements of 2-chloro- or 2,9-dichloro-1,10phenanthroline with *N*,*N*-dimethylethylenediamine afforded the corresponding amine and diamino analogues. An amino-substituted-2,2'-bis-1,10-phenanthroline has been prepared.

© 2009 Elsevier Ltd. All rights reserved.

Our interest in the synthesis of analogues with 1,10-phenantholine pharmacophores is based on their potential applications as inhibitors of telomerase, an enzyme found in cancer cells which controls the continuous growth of the tumor.^{1,2} In particular, we wish to evaluate the ability of metal-binding ligands such as heteroatom-bridged macrocycles to stabilize the G-quadruplex structure of telomeric DNA and interfere with the action of telomerase. Porphyrins (tetradentate nitrogen ligands) have been shown to act as telomerase inhibitors,³ and a platinum-1,10-phenanthroline complex has demonstrated telomerase inhibition.⁴

A mixture of $1a^5$ and thiourea in refluxing ethanol led to $2^{6.7}$ in reasonable yields. The formulation as **2**, rather than the tautomeric form, is based on NMR comparisons with **3**, a non-tautomerizable model. The ¹³C NMR for the C=S in **2** appears at 186.1 ppm (DMSO- d_6), while that for 3^8 is at 185.1 ppm (CDCl₃). Treatment of **1a** with NaSH hydrate in DMF at 130–135 °C for 3 h followed by acidification readily led to **4**.⁹ A previous preparation of **4** has been reported, and the authors proposed the thione form on one side when the ¹H NMR was run in CDCl₃ and the dithiol tautomer in DMSO- d_6^{10}

The structure as **4**, rather than the tautomeric forms, was established by an NMR comparison with **5a** which cannot undergo tautomerism. Analogue **5a**¹¹ was prepared by treatment of **5b**¹² with Lawesson's reagent, and it exhibits a ¹³C NMR C=S absorption (DMSO- d_6) at 183.6 ppm, while **4** exhibits a similar absorption at 182.4 ppm. In addition, **4** and **5a** exhibit similar ¹H NMR absorptions.

The metal-free macrocycle **6** has been prepared by thermolysis of **2** in dimethyl acetamide in the presence of DBU.¹³ A Na⁺ complex of **6** was prepared by heating **2** with NaOH in *N*,*N*-DMA.¹⁴ Thermolysis of **1a** with H₂S at 170 °C afforded **6** (presumably as a salt).¹⁵ We have found that heating a solution of equimolar molar amounts of **1a** and **4** in diphenyl ether led to the precipitation of

^{*} Corresponding author. Tel.: +1 802 656 0271; fax: +1 802 656 8705. *E-mail address:* A.Paul.Krapcho@uvm.edu (A.P. Krapcho).

^{0040-4039/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.01.138

the sulfur macrocycle **6** (as the hydrochloride salt), which was readily isolated as a lemon-yellow solid.¹⁶ The structure was clearly established by ¹H NMR and ¹³C NMR data obtained in CF₃COOD. The macrocycle **6** could also be prepared by thermolysis of **2** in diphenyl ether.¹⁷

As a model for NMR comparison, the 2,9-bis-(methylthio)-[1,10]-phenanthroline (**7**)¹⁸ was prepared by treatment of **1a** with sodium thiomethoxide. A comparison of the chemical shifts in the ¹H NMR spectra of **6** with those of **7** (both in CF₃COOD) showed an upfield shift for the d,s,d pattern of about 0.3 ppm for **7** of each absorption in **6**.

We then turned our attention to the preparation of nitrogensubstituted bis-1,10-phenanthrolines. Upon refluxing **1b** or **1a** in *N*,*N*-dimethylethylenediamine, the corresponding mono- and disubstituted-1,10-phenanthrolines **8a**¹⁹ or **8b**²⁰ were readily obtained in high yields.

Initial attempts to prepare **9** by thermolysis of **8a** with **1b** in diphenyl ether or in DMF in the presence of K_2CO_3 at 150 °C were unsuccessful. However, treatment of **8a** with NaH in DMF followed by addition of **1b** and refluxing led to the amino-substituted bis-2,2'-1,10-phenanthroline **9.**²¹ Attempts to prepare the amino-bis-1,10-phenanthroline macrocycle **10** by thermolysis of **8b** with **1a** in diphenyl ether or in DMF, K_2CO_3 have been unsuccessful. Efforts to prepare **10** are currently being pursued.

The sulfur macrocycle (HCl salt) **6**, **8a**, **8b** and **9** are being evaluated for their anti-telomerase activities, and the results will be reported on completion of the assays.

Acknowledgments

We wish to thank Novuspharma SPA (Bressso, Italy, recently merged with CTI, Seattle, WA) for providing partial financial support to Silvia Sparapani (Universita di Camerino, Camerino, Italy), and the Camille and Henry Dreyfus Foundation for a Senior Scientist Mentor Award (A.P.K.) which provided the funding for the undergraduate students A.L. and J.D.S. Dr. Bruce Deker (University of Vermont) provided valuable advice for obtaining the NMR data for **5a**.

References and notes

- 1. Davis, J. T. Angew. Chem., Int. Ed. 2004, 43, 668.
- 2. Tan, J.-H.; Gu, L-Q.; Wu, J.-W. Mini-Rev. Med. Chem. 2008, 8, 1163.
- Maraval, A.; Franco, S.; Vialas, C.; Pratviel, G.; Blasco, M. A.; Meunier, B. Org. Biomol. Chem. 2003, 1, 921.
- 4. Reed, J. E.; Neidle, S.; Vilar, R. Chem. Commun. 2007, 4366.
- 5. Krapcho, A. P.; Lanza, J. B. Org. Prep. Proced. Int. 2007, 39, 603.
- Hirai, M.; Shinozuka, K.; Sawai, H.; Ogawa, S. Chem. Lett. 1992, 2023. Treatment
 of 1a with thiourea is reported to afford 2 without the benefit of any
 experimental details or spectra data to support this structure.

- 7. A mixture of **1a** (210 mg, 0.84 mmol), thiourea (130 mg, 1.70 mmol), and ethyl alcohol (9 mL) was refluxed for 3 h, and the ethanol was removed by rotary evaporation. The residue was heated with CH₂Cl₂ (40 mL) and the insoluble material was removed by filtration. The filtrate was concentrated by rotary evaporation to yield **2** as a yellow solid (74 mg, 34%). Recrystallization from CH₂Cl₂ led to beautiful yellow needle-like crystals; mp >310 °C (yellow to orange color change). ¹H NMR (CDCl₃): δ 12.04 (br s, 0.5H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.65 (m, 4H), 7.56 (d, *J* = 8.5 Hz, 1H).¹H NMR (DMSO-d₆) δ 12.32 (br s), 8.60 (d, *J* = 9.0 Hz), 8.06 (d, *J* = 9.0 Hz), 7.91 (m, 2H), 7.87 (d, *J* = 8.5 Hz), 7.54 (d, *J* = 9.0 Hz). ¹³C NMR (DMSO-d₆): δ 186.1, 155.5, 145.9, 140.6, 140.5, 139.8, 139.4, 132.7, 131.3, 130.5, 128.5, 127.4. Anal. Calcd for C₁₂H₇ClN₂S: C, 58.42; H, 2.86; N, 11.35. Found: C, 58.31; H, 2.82; 11.25.
- 8. Krapcho, A. P.; Sparapani, S.; Boxer, M. Tetrahedron Lett. 2007, 48, 5593. A mixture of **1a** (0.114 mg, 0.45 mmol) and NaSH H₂O (0.200 g) in DMF (2 mL), 9 which formed a bright green mixture, was heated in an oil bath (130-135 °C) for 3.5 h. After standing overnight, a yellow precipitate formed in a dark redorange liquid. The DMF was removed under reduced pressure on a water aspirator to leave a yellow-orange solid. Water (3 mL) was added followed by acetic acid (2 mL, 2 M), which led to a bright yellow solid. The product was collected by filtration, heated in chloroform, and some insoluble material was removed by filtration from the hot chloroform. On concentration of the filtrate, **4** was obtained as an orange solid (84 mg, 74%); mp 193–197 °C (lit. mp¹⁰ 217 °C). ¹H NMR (DMSO- d_6) δ 10.91 (br s, 0.5H), 7.91 (d, J = 9.05 Hz, 2H), 7.67 (s, 2H), 7.41 (d, J = 9.05 Hz, 2H); addition of D₂O leads to disappearance of NH absorption at 10.91. ¹H NMR (CF₃COOD) δ 8.72 (d, J = 9.0 Hz, 2H), 8.24 (s, 2H), 8.08 (d, J = 8.5 Hz, 2H). ¹³C NMR (DMSO- d_6) δ 182.4, 135.1, 133.5, 126.8, 123.6, 123.5
- Hunziker, M.; Hauser, U. *Heterocycles* 1982, 19, 2131. Prepared under rather drastic conditions by heating 1a with excess KSH in ethanol in a sealed Teflon cup at 140 °C for 23 h.
- 11. Unpublished results. Prepared by treatment of **5b** with Lawesson's reagent in THF. ¹³C NMR (DMSO-*d*₆) δ 183.6, 134.3, 133.0, 132.1, 126.1, 125.5, 53.2, 24.5; ¹H NMR (DMSO-*d*₆) δ 7.93 (d, *J* = 9.0 Hz, 2H), 7.82 (s, 2H), 7.63 (d, *J* = 9.0 Hz, 2H), 4.62 (br s, 4H), 2.53 (m, 2H). Anal. Calcd for C₁₅H₁₂N₂S₂: C, 63.35; H, 4.25; N, 9.85. Found: 63.01; H, 4.00; N, 9.54. The protons adjacent to the nitrogen were broadened by the quadrupole of ¹⁴N, and appeared only if the ¹⁴N symmetry was increased by raising the temperature. Since these protons relax very fast the accurate integration required a short acquisition time.
- 12. Yamada, M.; Nakamura, Y.; Kuroda, S.; Shimao, I. Bull. Chem. Soc. Jpn. 1990, 63, 2710.
- Hirai, M.; Kazuo, S.; Hiroaki, O.; Ogawa, S. Bull. Chem. Soc. Jpn. 1994, 67, 1147. Attempts to repeat their preparation of the metal-free macrocyclic 6b by heating 2, DBN (200 mL) in DMA (10 mL) 1 h at 80 °C in our hands was unsuccessful.
- 14. Hirai, M.; Shinozuka, K.; Ogawa, S.; Sawai, H. Chem. Lett. 1996, 1113.
- 15. Wang, W.-J.; Sengul, A.; Luo, C.-F.; Kao, H.-C.; Cheng, Y.-H. Tetrahedron Lett. 2003, 44, 7099. The mono-protonated salt was prepared by slow diffusion of ether into a TFA solution of 6. The ¹H NMR (CF₃CO₂D) was incorrectly assigned as 9.20 (d, *J* = 8.7 Hz, 4H), 8.61 (d, *J* = 8.7 Hz, 4H). The 8.61 peak is a singlet, while the 8.44 peak is a doublet.
- 16. A mixture of **4** (50 mg, 0.20 mmol) and **1a** (50 mg, 0.20 mmol) in diphenyl ether (3 mL) was placed in an oil bath, and the bath was gradually heated to 130 °C (1 h) and held at this temperature for 1.5 h. The initial orange solution deposited a yellow solid over this period. The mixture was cooled, and the product was collected by filtration, washed thoroughly with ether, and dried to yield **6** as a lemon-yellow solid (89 mg, 94%, for mono HCl salt), mp >260 °C. ¹H NMR (CF₃CO₂D) δ 9.05 (d, *J* = 8.8 Hz, 4H), 8.48 (s, 4H), 8.30 (*J* = 8.8 Hz, 4H); ¹H NMR (CF₃CO₂D) δ 159.2, 145.6, 138.2, 130.0, 131.7, 128.2.
- 17. A mixture of 2 (26 mg, 0.10 mmol) in diphenyl ether 99% (1 mL) was heated at 165–172 °C for 4 h. An orange solution formed, followed by the precipitation of a yellow solid. The suspension was cooled to room temperature, the solid was collected by filtration and was thoroughly washed with ether to afford 6 (15 mg, 62%).
- 18. A mixture of **1a** (46 mg, 0.18 mmol) in DMF (0.5 mL) was treated with sodium thiomethoxide (63 mg, 0.090 mmol) and was stirred at rt (20 h). Water was added, and the white product was collected by filtration, washed thoroughly with water, and dried to afford **7** (43 mg, 88%); mp 183–184 °C (lit. mp¹⁰ 192 °C) (from acetone): ¹H NMR (CDCl₃) δ 7.95 (d, J = 8.4 Hz, 2H), 7.62 (s, 2H), 7.44 (d, J = 8.4 Hz, 2H), 2.91 (s, 6H); ¹H NMR (DMSO-d₆) δ 8.26 (d, J = 8.4 Hz, 2H), 7.84 (s, 2H), 7.62 (J = 8.4 Hz, 2H), 2.81 (s, 6H); ¹H NMR (CF₃COOD) δ 8.71 (d, J = 9.1 Hz, 2H), 8.18 (s, 2H), 8.01 (d, J = 8.6 Hz, 2H), 3.02 (s, 6H). ¹³C NMR (CDCl₃) δ 160.0, 144.9, 135.3, 126.1, 124.7, 122.1, 128.
- A mixture of **1b** (1.18 g, 5.5 mmol) and *N*,*N*-dimethylethylenediamine (2.0 mL, 18 mmol) was refluxed for 19 h. The excess amine was removed by distillation under water aspirator pressure, and the residue was placed under vacuum pump pressure overnight. Treatment of the residue with aqueous KOH yielded an oil which was extracted into CH₂Cl₂. After drying over sodium sulfate and removal of the solvent, the brown solid was triturated with hexane and collected to afford **8a** as a yellow solid (1.28 g, 87%); mp 123–125 °C; ¹H NMR *δ* 9.09 (dd, *J* = 1.8, 4.3 Hz, 1H), 8.16 (dd, *J* = 1.8, 8.1 Hz, 1H), 7.95 (d, *J* = 8.8 Hz, 1H), 7.62 (d, 8.7 Hz, 1H), 7.52 (dd, *J* = 4.3, 8.1 Hz, 1H); 7.46 (d, *J* = 8.7 Hz, 1H); 6.85 (d, *J* = 8.8 Hz, 1H), 5.90 (br s, 1H), 3.60 (m, 2H), 2.62 (t, *J* = 6.2 Hz, 2H), 2.29 (s, 6H). ¹³C NMR (CDCl₃) *δ* 157.9; 149.2; 146.0; 145.0; 137.6; 135.7; 129.2; 126.5; 122.1; 122.0; 120.8; 57.8; 45.0; 39.6. Anal. Calcd for C₁₆H₁₈N₄: C, 72.15; H, 6.81; N, 21.04. Found; C, 72.10; H, 6.60; N, 20.95.

- 20. A mixture of **1a** (200 mg, 0.77 mmol) and *N*,*N*-dimethylethylenediamine (4 mL) was refluxed for 22 h. Workup as described for **8a** led to the product **8b** as an off- white solid (200 mg, 72%); recrystallized from cold ethyl acetate, mp 65–67 °C. ¹H NMR (CDCl₃) δ 7.84 (d, *J* = 8.7 Hz, 2H); 7.31 (s, 2H); 6.75 (d, *J* = 8.7 Hz, 2H); 5.64 (br s, 2H); 3.68 (m, 4H); 2.61 (t, *J* = 6.1 Hz, 4H); 2.30 (s, 12H). ¹³C NMR (CDCl₃) δ 157.1; 144.1; 137.4; 123.0; 121.3; 110.6; 58.3; 45.2; 39.2. Anal. Calcd for $C_{20}H_{28}N_6$: C, 68.15; H, 8.01; N, 23.84. Found: C, 68.01; H, 7.89; N, 23.85.
- 21. The amine **8a** (370 mg, 1.4 mmol) in DMF (2.5 mL) was treated with NaH (110 mg, 2.8 mmol) and after gas evolution ceased, **1b** (300 mg, 1.4 mmol) was added and the mixture was stirred at rt for 0.25 h, heated to 150 °C over 1.5 h,

and then refluxed for 2 h. The cooled mixture was poured over ice and a light brown oily solid was collected by filtration. This material was taken up in acetonitrile and the light brown solid was collected by filtration (175 mg, 28%). This solid on dissolving in ethyl acetate and filtration to remove some insoluble material led to **9** as yellow crystals, mp 175–177 °C. ¹H NMR (CDCl₃) δ 9.15 (dd, *J* = 1.5, 4.5 Hz, 2H), 8.23 (dd, *J* = 1.5, 8.5 Hz, 2H), 8.08 (d, *J* = 9.0 Hz, 2H), 7.74 (d, *J* = 8.5 Hz, 2H); 7.64 (m, 2H), 7.61 (dd, *J* = 4.5, 8.5 Hz, 2H), 5.10 (t, *J* = 7.5 Hz, 2H), 2.92 (t, 7.5 Hz, 2H), 2.42 (s, 2H). ¹³C NMR (CDCl₃) δ 156.2; 149.7; 145.6; 145.3; 137.4; 136.1; 129.2; 126.1; 124.8; 124.0; 122.7; 116.4; 56.9; 47.6; 45.5. Anal. Calcd for C₂₈H₂₄N₆: C, 75.65; H, 5.44; N, 18.91. Found: C, 75.55; H, 5.34; N, 18.76.